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1 Concentration of Sample Covariance of Sub-Gaussian and
Bounded Random Vectors

1.1 Concentration of sample covariance of sub-Gaussian vectors

Last time, we were talking about concentration of sub-Gaussian sample covariance. If we

have Xi
iid∼ P ∈ P(Rd) and covariance matrix E[XiX

>
i ] = Σ ∈ Sd×d+ . Then we can estimate

Σ by the sample covariance matrix Σ̂ = 1
n

∑n
i=1XiX

>
i = 1

nX
>X ∈ Sd×d+ .

Definition 1.1. We say a mean 0 random variable x ∈ Rd is sub-Gaussian(σ) if

E[eλ〈v,x〉] ≤ eλ2‖v‖22σ2/2 ∀λ ∈ R, v ∈ Rd.

A sufficient condition for X ∈ Rd to be sG(σ) is that Xi are independent with Xi ∼
sG(σ).

Theorem 1.1. Let (Xi)i∈[n] be independent, mean 0 sG(σ). Then wth probability at least
1− δ, we have

‖Σ̂− Σ‖op ≤ Cσ2

(√
d+ log(1/δ)

n
+
d+ log(1/δ)

n

)
.

Proof. Here is the high level intuition of the proof:
We can represent

‖Σ̂− Σ‖op = sup
v∈Sd−1

|〈v, (Σ̂− Σ)v〉|

= sup
v∈Sd−1

∣∣∣∣∣ 1n
n∑
i=1

(〈Xi, v〉2 − E[〈Xi, v〉2])

∣∣∣∣∣ .
(a) Fix v. Then 1

n

∑n
i=1(〈Xi, v〉2 − E[〈Xi, v〉2]) has a sub-exponential tail bond.
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(b) If we let |Ωε = N | be the size of an ε-cover of the sphere, then we get the metric
entropy bound (instead of a union bound over all the points on the sphere)

sup
v∈Ωε

∣∣∣∣∣ 1n
n∑
i=1

(〈Xi, v〉2 − E[〈Xi, v〉2])

∣∣∣∣∣ .
√

log(Nε/δ)

n
+

log(Nε/δ)

n
.

(c) Show that Nε � d.

(d) Last, show that the discretization error is multiplicative.

Now for the actual proof:
Let Ωε = {v1, . . . , vNε be an ε-covering of Sd−1 in the ‖·‖2 norm. Then |Ωε| ≤ (1+2/ε)d.

We claim that for every matrix A ∈ Rd×d,

‖A‖op ≤
1

1− 2ε− ε2
sup
v∈Ωε

|〈, Av〉|.

This claim holds because
‖A‖op = sup

v∈Sd−1

v,Av〉.

Then for all v ∈ Sd−1, there is a vj ∈ Ωε such that ‖v − w‖2 ≤ ε. We can then compare

〈v,Av〉 = 〈w,Aw〉+ 2〈v − w,Aw〉+ 〈v − w,A(v − w)〉.

Using this algebra, we get the bound

sup
v∈Sd−1

|〈v,Av〉| ≤ sup
w∈Ωε

|〈w,Aw〉|+ (2ε+ ε2)‖A‖op.

Rearranging this gives the claim:

‖A‖op ≤
1

1− 2ε− ε2
sup
v∈Ωε

|〈v,Av〉|.

Take ε = 1/8, so we have a covering with |Ωε| ≤ 17d. Then

‖Σ̂− Σ‖op ≤ 2 sup
v∈Ω1/8

|〈v, (Σ̂− Σ)v〉|.

Now look at the tail bound of ‖〈v, (Σ̂− Σ)v〉| for fixed v. Then

|〈v, (Σ̂− Σ)v〉| =

∣∣∣∣∣ 1n
n∑
i=1

(〈v,Xi)
2 − E[〈v,Xi〉2]

∣∣∣∣∣ .
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By assumption, 〈v,Xi〉/σ is sG(1), so ((〈v,Xi)
2 − E[〈v,Xi〉2])/σ2 is sE(1, 1). Therefore,

( 1
n

∑n
i=1(〈v,Xi)

2 − E[〈v,Xi〉2])/σ2 is sE(1/
√
n, 1/n).

Thus, we get the sub-exponential tail bound

P(|〈v, (Σ̂− Σ)v〉| ≥ σ2t) ≤ 2 exp(−nmin(t2, t).

Using a union bound, we get

P(|〈v, (Σ̂− Σ)v〉| ≥ σ2t) ≤ 2 exp(−nmin(t2, t) + d log 17).

Now pick t = C max{
√

d+log(1/δ)
n , d+log(1/δ)

n }, so we get

P

(
sup

v∈Ω1/8

|〈v, (Σ̂− Σ)v〉| ≤ Cσ2 max

{√
d+ log(1/δ)

n
,
d+ log(1/δ)

n

})
≥ 1− δ.

That is, with high probability,

‖Σ̂− Σ‖op ≤ Cσ2 max

{√
d+ log(1/δ)

n
,
d+ log(1/δ)

n

}
.

1.2 Concentration of sample covariance of bounded random vectors

Theorem 1.2. Let Xi
iid∼ X ∈ Rd, and let the covariance matrix E[XX>] = Σ. Suppose

that ‖X‖22 ≤ b almost surely. Then with probability 1− δ,

‖Σ̂− Σ‖op .

√
b‖Σ‖2 log(d/δ)

n
+
b

n
log(d/δ).

Example 1.1. Let X ∼ Unif(Sd−1(
√
d)), and let Σ = E[XX>] = Id. Then we have b = d,

so the theorem gives

‖Σ̂− Σ‖2 .

√
d log d

n
+
d

n
log d.

The proof of this theorem follows from a matrix Bernstein inequality, which we will
now prove.

1.3 Matrix Hoeffding/Bernstein inequality

In general, let X1, X2, . . . , Xn ∈ R be independent sG(σ) random variables. Then the
scalar Hoeffding inequality says

P

(∣∣∣∣∣ 1n
n∑
i=1

(Xi − E[Xi])

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
− nt

2

2σ2

)
.

The matrix Hoeffding inequality says

3



Theorem 1.3. Let Q1, Q2, . . . , Qn ∈ Sd×d be independent sG(V ), where V ∈ Sd×d+ . Then

P

∥∥∥∥∥ 1

n

n∑
i=1

(Qi − E[Qi])

∥∥∥∥∥
op

≥ t

 ≤ 2d exp

(
− nt2

2‖V ‖2op

)
.

We get an extra factor of d in the bound. Notice that when d = 1, notice that this
reduces to the scalar Hoeffding inequality. Let’s review the proof of the scalar Hoeffding
inequality:

Use the scalar Chernoff inequality to get

P

(
1

n

n∑
i=1

(Xi − E[Xi]) ≥ t

)
≤ inf

λ≥0

E[eλ
∑n
i=1(Xi−E[Xi])

eλtn

Using the scalar tensorization of the MGF,

= inf
λ≥0

∏n
i=1 E[eλ(Xi−E[Xi])]

eλtn

Now we use a scalar MGF bound from the sub-Gaussian definition.

≤ inf
λ≥0

n∏
i=1

eλ
2σ2/2e−λt

n

= e−
nt2

2σ2 .

The proof of the scalar Bernstein inequality is similar.

1.3.1 Matrix Chernoff inequality

Here is a Matrix Chernofff inequality:

Lemma 1.1. Let Q ∈ Sd×d be a symmetric matrix. Then

P(λmax(Q) ≥ t) ≤ inf
λ≥0

E[tr(eλQ)]

eλt
.

Let Q ∈ Sd×d be a symmetric matrix with eigendecomposition Q = UΛU>. If
we let f : R → R, we define f(Q) := U diag(f(λ1, . . . , f(λd))U

> ∈ Sd×d, so eQ =

U diag(eλ1 , . . . , eλd)U>. If f is an analytic function with Taylor expansion f(x) =
∑∞

i=1
f (i)(0)
i! xi,

then

f(Q) =

∞∑
i=1

f (i)(0)

i!
Qi.

In particular,

eQ =
∞∑
i=0

1

i!
Qi.
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Proof. For λ ≥ 0,

P(λmax(Q) ≥ t) = P(eλλmax(Q) ≥ eλt)
= P(λmax(eλQ) ≥ eλt)

Use Markov’s inequality.

≤ E[λmax(eλQ)]

eλt

The largest eigenvalue of a positive definite matrix is upper bounded by its trace.

≤ E[tr(eλQ)]

eλt
.

1.3.2 Sub-Gaussian and sub-exponential matrices

Definition 1.2. A matrix Q ∈ Sd×d with E[Q] = 0 is sub-Gaussian(V ) for V ∈ Sd×d+ if

ΦQ(λ) = E[eλQ] � eλ2V/2 ∀λ ∈ R.

This is not equivalent to the definition we have given for vectors.

Example 1.2. Let Q = εB, where B ∈ Sd×d and ε ∼ Unif({±1}). Then

E[eλQ] =

∞∑
k=0

λk

k!
E[Qk]

=

∞∑
i=0

λ2i

(2i)!
E[Q2i]

=

∞∑
i=1

λ2i

(2i)!
B2i

≺
∞∑
i=1

1

i!

(
λ2B2

2

)i
= eλ

2B2/2.

Similarly, we can define sub-exponential matrices.

Definition 1.3. A matrixQ ∈ Sd×d with E[Q] = 0 is sub-exponential(V, α) for V ∈ Sd×d+

and α ∈ R≥0 if

ΦQ(λ) = E[eλQ] � eλ2V/2 ∀|λ| ≤ 1

α
.

Here is a sufficient condition: Define Var(Q) = E[Q2] − (E[Q])2 ∈ Sd×d+ . If E[Q] = 0
and ‖Q‖op ≤ b a.s., then Q ∼ sE(Var(Q), b). This is proved in Wainwright’s textbook.
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Example 1.3. Let ‖Xi‖2 ≤
√
b, so E[XiX

>
i ] = Σ. Then if we let Q = XiX

>
i − Σ, then

‖Q‖op ≤ b. This gives
Var(Q) = E[(XiX

>
i − Σ)2] � bΣ,

so Q ∼ sE(bΣ, b).

1.3.3 Tensorization of the matrix MGF

Now we know how to give an upper bound of the matrix MGF. The last step is to see the
tensorization of the matrix MGF. The scalar MGF tensorizes as

E[eλ
∑n
i=1Xi ] =

n∏
i=1

E[eλXi ].

This is not true for matrices:

E[eλ
∑n
i=1Qi ] 6=

n∏
i=1

E[eλQi ],

since eA+B 6= eAeB. However, this lemma solves the problem:

Lemma 1.2. Let Q1, . . . , Qn be independent. Then

tr(E[eλ
∑n
i=1Qi ]) ≤ tr(e

∑n
i=1 logE[eλQi ]).

To prove this, we use the following general matrix inequality:

Lemma 1.3 (Lieb’s inequality, 1973). Let H ∈ Sd×d. Then the function f : Sd×d+ → R
sending A 7→ tr(eH+logA) is concave.

This inequality was originally proven for the use of quantum information theory. Using
Lieb’s inequality, the lemma is just the repeated application of this concavity and Jensen’s
inequality. Now we we can prove the matrix Hoeffding inequality:

Proof. Let Qi be independent sG(Vi) random matrices with E[Qi] = 0. Use the matrix
Chernoff inequality to get

P

(
λmax

(
1

n

n∑
i=1

Qi

)
≥ t

)
≤ inf

λ≥0
E[tr(eλ

∑n
i=1Qi)]e

−λnt

Using the Matrix tensorization of the MGF,

≤ inf
λ≥0

tr(e
∑n
i=1 logE[eλQi ])e−λnt
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Now apply the matrix sub-Gaussian upper bound and the inequality logA � logB if A ≺ B
(which is not true in general for every monotone function) to get

inf
λ≥0

tr(e
∑n
i=1(λ2/2)Vi)e−λnt

≤ d inf
λ≥0

e(λ2/2)n‖V ‖ope−λnt

= de
− nt2

2‖V ‖op .

This gives the matrix Hoeffding and matrix Bernstein inequalities:

Theorem 1.4 (Matrix Hoeffding inequality). Let Qi
ind∼ sG(Vi) with E[Qi] = 0. Then

P

∥∥∥∥∥ 1

n

n∑
i=1

Qi

∥∥∥∥∥
op

≥ t

 ≤ 2d exp

(
− nt

2

2σ2

)
,

where σ2 = ‖ 1
n

∑n
i=1 Vi‖op.

Theorem 1.5 (Matrix Bernstein inequality). Let Qi
ind∼ sE(Vi, αi) with E[Qi] = 0. Then

P

∥∥∥∥∥ 1

n

n∑
i=1

Qi

∥∥∥∥∥
op

≥ t

 ≤ 2d exp

(
−nmin

{
t2

2σ2
,
t

2α∗

})
,

where σ2 = ‖ 1
n

∑n
i=1 Vi‖op and α∗ = maxi∈[n] αi.

Remark 1.1. These are symmetric versions of these inequalities. We can prove non-
symmetric versions by taking A ∈ Rn×d and considering

Q =

[
0 A
A> 0

]
∈ R(n+d)×(n+d).

The singular values of A are related to the eigenvalues of Q.

Going back to the sample covariance, we have ‖Xi‖22 ≤ b and E[XiX
>
i ] = Σ. Then

Σ̂− Σ ∼ sE(bΣ, b), which gives us the matrix Bernstein bound

P(‖Σ̂− Σ‖op ≥ t) ≤ 2d exp

(
−nmin

{
t2

2b‖Σ‖op
,
t

2b

})
.

So with high probability,

‖Σ̂− Σ‖op .

√
b‖Σ‖op log(d/δ)

n
+
b

n
log(d/δ).
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